Division Engines

ePCC System Waukesha VHP

Engine Upgrade Packages

March 2018

Lean Burn Combustion

The Challenge

 A leaner mixture is more difficult to ignite and has typically a slower flame propagation

The Obvious Idea

Improved ignition (key issue)

The solution

- Pre Combustion Chamber
 - Order of magnitude higher ignition energy
 - <u>BUT</u>, it requires precise air/fuel ratio control to ensure stable main chamber combustion

PCC Ignition

PCC – Pre Combustion Chamber

Small cavity providing an easy to ignite environment (stoichiometric)

Closed

Order of magnitude higher ignition energy compared to open chamber

Open

ignition

State of the Art

Check valves

Problems:

- Inconsistent fueling
- Frequently clogged / quit working
- Varying Air/Fuel ratio
- Too rich Air/Fuel ratio during startup
- Fuel slip

Combustion Stability at Lean Mixtures

Ignition (Pre Chamber)

Evaluation of PCC performance – MCC pressure and PCC ion sense

Stable main chamber combustion due to perfect PCC firing

Slow and late main chamber combustion due to delayed PCC firing

Combustion Stability with ePCC

Check Valve Performance

Poor combustion due to late or missing ignition of one or both pre chambers (Check valve)

Check Valve vs. Electronic Valve

⇒The real solution is a pre combustion chamber with electronic fuel injection

⇒ ePCC

Peak pressure location

6/21/2018 5

Implementation on High-Speed Engines

Results Waukesha 7042GL

- Bulk engine PCC fueling optimization (same pulse width for all cylinders, individual adjustment possible)
- Improvements with ePCC could be demonstrated compared to new and optimal adjusted check valve fueling

6/21/2018 6

ePCC Waukesha 7042GL Package

Field and Lab Test Results

- Improved combustion stability at rated operating conditions as well as reduced hydrocarbons emission and slightly improved fuel consumption
- Achieved stable combustion down to 0.5g/bHp-hr NO_x

ePCC Waukesha 7042GL Package

Field Installation

ePCC Installation Experience

Slow Speed Engines

- 100+ engines are running successfully in the field
- Very positive customer feedback due to outstanding performance
- First installation in operation for more than 10 years

High Speed Gas Engines

- 20+ installations on Superior 825 and Waukesha VHP engines
- Combustion performance improvements are identical to large bore engine results
- First installation in operation since Nov 2011

ePCC Highspeed Package – Summary

The Need

- Most lean burn engines require pre combustion chambers for igniting the lean mixture. The fueling is controlled via check valves, which perform poorly:
 - Frequently clogged / quit working
 - Inconsistent fueling; varying Air/Fuel ratio
 - Too rich Air/Fuel ratio during startup; fuel slip
 - Root cause #1 for combustion issues

Pre Chamber Check Valve

The Solution

- Electronically controlled pre chamber fuel valve ePCC
 - No maintenance issues
 - Precise and consistent fueling (each cycle)
 - Stable combustion even at very lean mixtures
 - Improved startup, smooth and efficient idling
 - Small Fuel Saving's

We are Engine.